UNIT 1: RATIONAL EXPRESSIONS

DAY 3: FACTORING REVIEW

(DAY 1 & 2 - Handouts)

Factoring is the opposite of **expanding**.

Expanding:

Factoring:

FACTORING METHODS

1. Common Factoring

Steps:

2.
$$3y^2$$
-6 y

3.
$$7t^2-14t$$

4.
$$12x^3 - 9x^2 + 3x$$

5.
$$3x^2y^3-6xy+9x^3y^2$$

5.
$$3x^2y^3-6xy+9x^3y^2$$
 6. $2x^2+4x+3xy+6b$

7.
$$x^2(x+1)+3x(x+1)+5(x+1)$$

2	Eastoring	hu	Crau	nino
۷.	Factoring	IJΥ	Giou	pirig

Steps:

2.
$$6x^2+2xy-15x-5y$$

3.
$$3ny+2mx-2my-3nx$$

4.
$$6m^2n-12mn+20n^2-10mn$$

DAY 4: FACTORING REVIEW (CONTINUED)

3. Easy Trinomials

Factor:

Steps:

$$1 x^2 + 7x + 12$$

2.
$$x^2$$
- x -6

3.
$$x^2 - 8x + 12$$

4.
$$3x^2-6x-45$$

5.
$$4x^2 - 12xy - 160y^2$$

4. Tricky Trinomials

Factor:

Steps:

1
$$12x^2+23x+5$$

2.
$$6m^2+7m-3$$

3.
$$3y^2+22y-16$$

4.
$$6y^2 + 11r + 6$$

5.
$$4s^2+21st+27t^2$$

6.
$$5x^3 + 11x^2 + 2x$$

DAY 5: FACTORING REVIEW (CONTINUED)

5. Difference of Squares

This method only applies when:

Factor: a^2-b^2

Steps:

1. Square root first term

2. Square root second term

3. Put different signs in each bracket

$$4x^2-9$$

2.
$$9x^2-25$$

3.
$$32x^2-200y^2$$

4.
$$81x^4-1$$

5.
$$(x+2)^2-(y-5)^2$$

6.
$$25a^2-b^2-4b-4$$

7.
$$\frac{x^2}{16} - \frac{y^2}{36}$$

DAY 6: Simplifying Rational Expressions

Steps:

- 1. Factor numerator and denominator
- 2. State restrictions
- 3. Cancel, if possible

Restrictions become very important in senior math because thy help to graph a function. RESTRICTIONS create **holes** or **asymptotes**.

- Restrictions only occur in the **denominator**
- Restrictions are the value of a variable that would make the denominator **zero**

$$\frac{x+2}{x}$$

2.
$$\frac{3}{y-2}$$

$$3. \quad \frac{k}{(k-2)(k+1)}$$

4.
$$\frac{x}{x^2+x}$$

5.
$$\frac{x-4}{x^2-7x+12}$$

6.
$$\frac{a+b}{a-b}$$

7.
$$\frac{a+b}{b+a}$$

8.
$$\frac{a-b}{b-a}$$

9.
$$\frac{8x-16}{x^4-16}$$

DAY 7: Simplifying Rational Expressions (Continued)

Rational Number: is a number that can be written as a fraction. It is defined as any number that can be written in the form m, where m and n are integers (+ or -) and n 0.

Rational Expression: is an algebraic expression that can be written as a quotient of two polynomials.

Recall:

- 1. Factor numerator and denominator
- 2. State restrictions
- 3. Cancel, if possible

Examples:

$$\frac{3x^2-3x^3}{x^3-x}$$

2.
$$\frac{x^2 - x - 20}{15 + 2x - x^2}$$

3.
$$\frac{m^2-n^2}{m^2+2mn+n^2}$$

4.
$$\frac{12x^4 - 8x^3 - 4x^2}{x^2 - 1}$$

$$\frac{(p+5)+(p+1)(p+5)}{(p+5)(p+2)(2p+1)}$$

6. Simplify: $\frac{24x^2}{32x}$ State the value(s) of the variable for which the results are true.

DAY 8: Multiplying and Dividing Rational Expressions

Recall:

- 1. Factor ALL numerators and denominators
- 2. State restrictions
- 3. Cancel, if possible

Examples: Calculate each **product** and write it in the simplest form.

a)
$$\frac{4}{10}x\frac{7}{2}$$

b)
$$\frac{15}{10}x\frac{2}{6}$$

c)
$$\frac{5}{6}x\frac{12}{25}$$

a)
$$\frac{4}{10}x\frac{7}{2}$$
 b) $\frac{15}{10}x\frac{2}{6}$ c) $\frac{5}{6}x\frac{12}{25}$ d) $\frac{12a^2b}{15}x\frac{5ab}{8b^2}$ e) $\frac{x+3}{5x}x\frac{10x^2}{x+3}$

e)
$$\frac{x+3}{5x} \times \frac{10x^2}{x+3}$$

Examples: Calculate the **quotient** of each and write in simplest form.

(When multiplying rational expressions you can only cancel terms if they appear in the numerator and the denominator).

a)
$$\frac{x^2-4}{x^2-x-2}x\frac{4x+8}{(x+1)^2}$$

b)
$$\frac{1-3y}{2y+1}x\frac{4y^2-1}{1-9y^2}$$

c)
$$\frac{8x^2(y-2)}{4(y+2)}x\frac{3(y+2)}{xy}$$

d)
$$\frac{2x^2+5x-3}{4x^2-12x+5} \div \frac{3x^2+13x+12}{6x^2-7x-20}$$

DAY 9: Adding & Subtracting Rational Expressions

Rational expressions are added and subtracted the same way a rational number (fraction) is. Find a common denominator.

Steps:

- 1. Factor ALL numerators and denominators
- 2. State restrictions
- 3. Cancel, if possible
- 4. Find a common denominator
- 5. Add/Subtract numerator

Examples:

1. Write an expression equivalent to with the following denominators.

a) 4x

- b) x^2y c) x(x-3)

2. Simplify the expression and state restrictions.

a)
$$\frac{3}{x^{2}} + \frac{5}{x^{2}} - \frac{2}{x^{2}}$$

b)
$$\frac{4x-1}{x+2} - \frac{x-3}{x+2}$$

c)
$$\frac{3}{4x} + \frac{5}{6x^2}$$

d)
$$\frac{3x+2}{4} + \frac{x-4}{8} - \frac{2x-1}{6}$$

e)
$$\frac{5}{(x-5)} - \frac{2}{x^2-4x-5}$$

DAY 10: Adding & Subtracting Rational Expressions (Continued)

Examples: Simplify.

1.
$$\frac{3}{(t-3)} - \frac{4}{3-t}$$

2.
$$\frac{x-5}{x-3} - \frac{x-6}{x-3}$$

3.
$$\frac{m}{2m-4} - \frac{3}{3m-6} + 1$$

4.
$$\frac{x}{x^2+2x-8} - \frac{x+2}{x^2+x-20}$$