# UNIT 4: TRIGONOMETRY (WEEK 3) DAY 1: THE GENERAL FORMULA

| In General: |  |  |
|-------------|--|--|
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |
|             |  |  |

b)

Ex. 1) Use mapping to find the critical points for the following equations.

a)

c) d)

Ex. 2) Graph using mapping.

a) 
$$y = 2\sin x + 3$$

b) 
$$y = 3\sin 2(x - \pi/2)$$



c) 
$$y = 0.5\cos(x + \pi/2)$$

d) 
$$y = 4\cos(\frac{1}{2}x + \pi/4)$$



Ex. 3) Determine the amplitude, period, vertical translation and phase shift for each.

a) 
$$y = \sin x + 4$$

b) 
$$y = -2\cos 3(x + \pi/4) + 5$$

c) 
$$y = 4\cos(1/2)(x + 3\pi) - 4$$

d) 
$$y = 2\sin(3x + \pi) + 4$$

**Ex. 4)** Write an equation for the function with the given information.

a)

b)

sine function a = 6  $prd = 2\pi$  vt = -4 $phs = \pi/2$  left cosine function a = -2prd =  $\pi/2$ vt = none phs =  $\pi$  right

### **DAY 2: APPLICATIONS OF TRIGONOMETRIC GRAPHS**

| Ex. 1) The alternating half-daily cycles of the rise and fall of oceans are called tides. Tides in one section of the Bay of Fundy caused water to rise 6.5 m above average sea level and to drop 6.5 m below. The tide completes one cycle every 12 hours. Assuming the height of water with respect to average sea level to be modelled by a sine function, |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A) draw a graph for a 24 hr period. B) Find an equation of the graph in a.                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                               |

| Ex. 2) A carnival ferris wheel with a radius of 7m makes one complete revolution every 16 s. The bottom of the wheel is 1.5 m above the ground. |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| A) draw a graph to show how a person's height above the ground varies with time.<br>B) Find an equation of the graph in (a).                    |
| 1                                                                                                                                               |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |

**DAY 3: REVIEW** 



CONVERTING DEGREES ---> RADIANS

Ex) 90°

Ex)  $2\pi/3$ 

Ex) 2.14 rad

## ARC LENGTH FORMULA

$$\theta = a/r$$

$$a = \theta \times r$$

SINE WAVE



Points:

PRD:

## **COSINE WAVE**



Points:

PRD:

TRANSFORMING TRIG. FUNCTIONS

### **MAPPING**

Ex) 
$$y = 2\sin 3\theta$$

Ex) 
$$y = 4\cos(\frac{1}{2}\theta + \pi/4) - 1$$

Graph:  $y = 4\cos(\frac{1}{2}\Theta + \pi/4) - 1$ 



TRIG. APPLICATIONS:

- Tides
- Ferris Wheel