Recall:

angle of elevation

HORIZONTAL EYELINE

angle of depression

Ex 1) From a point on the ground 30 m from the foot of the Peace Tower, the angle of elevation to the top of the tower is 72°. Find the height of the tower to the nearest meter.

Ex 2) The tow rope pulling a para-sailor is 90 m long. A crew member on the boat estimates that the angle between the tow rope and the horizontal is 40°. Find the height of the para-sailor to the nearest meter.

Ex 3) A lighthouse sits at the top of a sheer cliff. The top of the lighthouse is 33 m above the sea. The angle of depression to sight a small fishing boat at sea is 24°. How far from the base of the cliff is the fishing boat (to the nearest meter)?

Unit 3: TRIGONOMETRY

Day 2: Problem Solving with Two Triangles

This involves solving one triangle in order to help us find what we are looking for in the second triangle.

Ex 1) Find DC.

STEPS:

1. Mentally map out what must be done and trig. function used.

2. Solve one triangle.

3. Solve 2nd triangle.

4. Therefore statement.

V

Unit 3: TRIGONOMETRY Day 3: Solving Triangles that are NOT Right-Angled

You can solve **any** triangle if you know:

- The lengths of two sides, or
- The length of one side and the measure of one acute angle
- **Ex. 1)** In \triangle ABC, calculate the length of AC to the nearest tenth of a centimeter.

Ex. 2) In \triangle ADC, calculate the length of AC to the nearest tenth of a centimeter.

Ex. 3) In \triangle ABC, calculate the length of CB to the nearest tenth of a centimeter.

