Unit 3: TRIGONOMETRY

Day 1: Solving Trigonometric Word Problems

Recall:
angle of elevation
HORIZONTAL EYELINE
angle of depression

Ex 1) From a point on the ground 30 m from the foot of the Peace Tower, the angle of elevation to the top of the tower is 72°. Find the height of the tower to the nearest meter.

Ex 2) The tow rope pulling a para-sailor is 90 m long. A crew member on the boat estimates that the angle between the tow rope and the horizontal is 40°. Find the height of the parasailor to the nearest meter.

Ex 3) A lighthouse sits at the top of a sheer cliff. The top of the lighthouse is 33 m above the sea. The angle of depression to sight a small fishing boat at sea is 24°. How far from the base of the cliff is the fishing boat (to the nearest meter)?

Unit 3: TRIGONOMETRY

Day 2: Problem Solving with Two Triangles

This involves solving one triangle in order to help us find what we are looking for in the second triangle.

Ex 1) Find DC.
STEPS:

1. Mentally map out what must be done and trig. function used.

D

2. Solve one triangle.
3. Solve $2^{\text {nd }}$ triangle.
4. Therefore statement.

Ex 2) Find AD.

Unit 3: TRIGONOMETRY

Day 3: Solving Triangles that are NOT Right-Angled

You can solve any triangle if you know:

- The lengths of two sides, or
- The length of one side and the measure of one acute angle

Ex. 1) In $\triangle A B C$, calculate the length of $A C$ to the nearest tenth of a centimeter.

Ex. 2) In $\triangle A D C$, calculate the length of $A C$ to the nearest tenth of a centimeter.

Ex. 3) In $\triangle A B C$, calculate the length of $C B$ to the nearest tenth of a centimeter.

