UNIT 3: TRIGONOMETRY DAY 1: SINE LAW

RECALL: Trig. Ratios can only be used with RIGHT-ANGLED TRIANGLES (SOH-CAH-TOA).

Oblique \triangle 's: a triangle that is NOT right-angled.

We can solve an oblique triangle by using one of two methods: SINE LAW or COS LAW.

SINE LAW:	
A la	

Use when given:

- 2 angles and any side
- 2 sides and an angle opposite one of those sides

Ex. 1) Find the measure of $\angle Q$.

STEPS: 1. Label sides (lower case) 2. Set up formula

3. Fill in and solve

Ex. 2) Find ∠A and side B.

Ex. 3) In $\triangle ABC$, $\angle A = 65.5^{\circ}$, $\angle B = 40^{\circ}$, AB = 7.25 cm, find b.

UNIT 3: TRIGONOMETRY DAY 2: COSINE LAW

Why do we need another law for non-right angled triangles? Why not just use SINE LAW?

Background:

COSINE LAW: was developed to solve oblique triangles.

Use when given:

- All 3 sides
- Sandwich (2 sides with one angle in between)

Ex. 1) Solve the triangle.

Ex. 2) In \triangle PQR, q = 5.07 cm, r = 9.02 cm, p = 6.18 cm. Find the smallest angle in the triangle. (Hint: The smallest angle is opposite the smallest side).

Ex. 3) In \triangle ABC, a = 38 cm, b = 47 cm, \angle C = 112.6°, Find c.

UNIT 3: TRIGONOMETRY DAY 3: COSINE LAW (CONTINUED) & PROBLEMS USING SINE AND COSINE LAW

Ex. 1) Solve the triangle.

Recall: COSINE LAW can be used when given:

- all 3 sides
- Sandwich (2 sides and 1 angle in between)

PROBLEMS USING SINE AND COSINE LAW

Ex. 1) Find the distance across a small bay, given the diagram.