UNIT 3: TRIGONOMETRY DAY 1: SINE LAW

RECALL: Trig. Ratios can only be used with RIGHT-ANGLED TRIANGLES (SOH-CAH-TOA).
Oblique \triangle 's: a triangle that is NOT right-angled.
We can solve an oblique triangle by using one of two methods: SINE LAW or COS LAW.

SINE LAW:

Use when given:

- 2 angles and any side
- 2 sides and an angle opposite one of those sides

Ex. 1) Find the measure of $\angle \mathrm{Q}$.

STEPS:

1. Label sides (lower case)
2. Set up formula
3. Fill in and solve

Ex. 2) Find $\angle A$ and side B.

Ex. 3) In $\triangle A B C, \angle A=65.5^{\circ}, \angle B=40^{\circ}, A B=7.25 \mathrm{~cm}$, find b .

UNIT 3: TRIGONOMETRY

DAY 2: COSINE LAW

Why do we need another law for non-right angled triangles? Why not just use SINE LAW?
Background:

COSINE LAW: was developed to solve oblique triangles.

Use when given:

- All 3 sides
- Sandwich (2 sides with one angle in between)

Ex. 1) Solve the triangle.

Ex. 2) In $\triangle P Q R, q=5.07 \mathrm{~cm}, r=9.02 \mathrm{~cm}, \mathrm{p}=6.18 \mathrm{~cm}$. Find the smallest angle in the triangle. (Hint: The smallest angle is opposite the smallest side).

Ex. 3) In $\triangle A B C, a=38 \mathrm{~cm}, \mathrm{~b}=47 \mathrm{~cm}, \angle \mathrm{C}=112.6^{\circ}$, Find c.

UNIT 3: TRIGONOMETRY

DAY 3: COSINE LAW (CONTINUED) \& PROBLEMS USING SINE AND COSINE LAW

Ex. 1) Solve the triangle.

Recall: COSINE LAW can be used when given:

- all 3 sides
- Sandwich (2 sides and 1 angle in between)

PROOF

PROBLEMS USING SINE AND COSINE LAW

Ex. 1) Find the distance across a small bay, given the diagram.

